1. A stone is thrown straight up from the top of a building with initial velocity 40 ft/sec and hits the ground 4 seconds later. The height of the building in feet is:
 a. 88 b. 96 c. 112 d. 128 e. 144
2. If a car accelerates from 0 to 60 mph in 10 seconds, what distance does it travel in those 10 seconds? (assume the acceleration is constant and note that 60 mph = 88 ft/sec)
 a. 40 ft b. 44 ft c. 88 ft d. 400 ft e. 440 ft
3. If the velocity of a car traveling in a straight line at time t is $v(t)$, then the difference in its odometer readings between times $t = a$ and $t = b$ is:
 a. $\int_a^b v(t)\,dt$ b. $\int_a^b v(t)\,dt$
 c. the net displacement of the car’s position from $t=a$ to $t=b$.
 d. the change in the car’s position from $t=a$ to $t=b$.
 e. none of these.
4. If an object is moving up and down along the y-axis with velocity $v(t)$ and $s'(t) = v(t)$, then it is false that $\int_a^b v(t)\,dt$ gives:
 a. $s(b) - s(a)$
 b. the net distance traveled by the object between $t=a$ and $t=b$.
 c. the total change in $s(t)$ between $t=a$ and $t=b$.
 d. The shift in the object’s position from $t=a$ and $t=b$.
 e. The total distance covered by the object from $t=a$ and $t=b$.
5. The function $f(x)$ which satisfies the equations $f(x)f'(x) = x$ and $f(0) = 1$ is:
 a. $f(x) = \sqrt{x^2 + 1}$ b. $f(x) = \sqrt{1 - x^2}$ c. $f(x) = x$
 d. $f(x) = e^x$ e. None of these
6. The curve that passes through the point (1,1) and whose slope at any point (x,y) is equal to $\frac{3y}{x}$ has the equation:
 a. $3x - 2 = y$ b. $y^3 = x$ c. $y = \sqrt[3]{x}$ d. $3y^2 = x^2 + 2$ e. $3y^2 - 2x = 1$
7. If $\frac{dy}{dx} = \frac{y}{2\sqrt{x}}$ and $y = 1$, when $x = 4$, then:
 a. $y^2 = 4\sqrt{x} - 7$ b. $\ln y = 4\sqrt{x} - 8$ c. $\ln y = \sqrt{x - 2}$ d. $y = e^{\sqrt{x}}$ e. $y = e^{\sqrt{x} - 2}$
8. If \(\frac{dy}{dx} = e^y \) and \(y = 0 \) when \(x = 1 \), then:
 a. \(y = \ln|x| \)
 b. \(y = \ln(2-x) \)
 c. \(e^{-y} = 2-x \)
 d. \(y = -\ln|x| \)
 e. \(e^{-y} = x-2 \)

9. If \(\frac{dy}{dx} = \frac{x}{\sqrt{9+x^2}} \) and \(y = 5 \) when \(x = 4 \), then:
 a. \(y = \sqrt{9+x^2} - 5 \)
 b. \(y = \sqrt{9+x^2} \)
 c. \(y = 2\sqrt{9+x^2} - 5 \)
 d. \(y = \frac{\sqrt{9+x^2} + 5}{2} \)
 e. None of these

10. If a substance decomposes at a rate proportional to the amount of the substance present, and if the amount decreases from 40 gm to 10 gm in 2 hours, then the constant of proportionality is:
 a. \(-\ln 2\)
 b. \(-\frac{1}{2}\)
 c. \(-\frac{1}{4}\)
 d. \(\frac{\ln 1}{4}\)
 e. \(\ln \frac{1}{8}\)

11. A cup of coffee at temperature 180°F is placed on a table in a room at 68°F. The differential equation for its temperature at time \(t \) is \(\frac{dy}{dx} = -0.11(y-68) \); \(y(0) = 180 \). After 10 minutes, the temperature (in °F) of the coffee is:
 a. 96
 b. 100
 c. 105
 d. 110
 e. 115

12. Approximately how long does it take the temperature of the coffee in question 11 to drop to 75°F?
 a. 10 min
 b. 15 min
 c. 18 min
 d. 20 min
 e. 25 min

13. According to Newton’s law of cooling, the temperature of an object decreases at a rate proportional to the difference between its temperature and that of the surrounding air. Suppose a corpse at temperature 32°C arrives at a mortuary where the temperature is kept at 10°C. Then the differential equation satisfied by the temperature \(T \) of the corpse \(t \) hours later is:
 a. \(\frac{dT}{dt} = -k(T-10) \)
 b. \(\frac{dT}{dt} = k(T-32) \)
 c. \(\frac{dT}{dt} = 32e^{-kt} \)
 d. \(\frac{dT}{dt} = -kT(T-10) \)
 e. \(\frac{dT}{dt} = kT(T-32) \)

14. If the corpse in Question 13 cools to 27°C in 1 hour, then its temperature is given by the equation:
 a. \(T = 22e^{-0.205t} \)
 b. \(T = 10e^{1.163t} \)
 c. \(T = 10 + 22e^{-0.258t} \)
 d. \(T = 32e^{-0.169t} \)
 e. \(T = 32 - 10e^{-0.093t} \)

15. The population of a city increases continuously at a rate proportional, at any time, to the population at that time. The population doubles in 50 years. After 75 years, the ratio of the population \(P \) to the initial population \(P_0 \) is:
 a. \(\frac{9}{4} \)
 b. \(\frac{5}{2} \)
 c. \(\frac{4}{1} \)
 d. \(\frac{2\sqrt{2}}{1} \)
 e. None of these